Endocannabinoids suppress excitatory synaptic transmission to dorsal raphe serotonin neurons through the activation of presynaptic CB1 receptors.
نویسندگان
چکیده
Endocannabinoid signaling in the dorsal raphe (DR) has recently been implicated in the regulation of anxiety and depression. However, the cellular mechanisms by which endocannabinoids (eCBs) regulate the excitability of DR 5-hydroxytryptamine (serotonin; 5-HT) neurons remain poorly understood. In the present study, using whole-cell recording from DR 5-HT neurons, we examined the effects of eCBs on glutamatergic synapses in the DR. We found that the eCB anandamide decreased the amplitude of evoked excitatory postsynaptic currents (eEPSCs). This effect was blocked by CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM 251) and mimicked by (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate (WIN 55,212-2), a CB(1) receptor agonist. The inhibition of eEPSC amplitude was associated with an increase in the paired-pulse ratio and coefficient of variance. Activation of CB(1) receptors also reduced the frequency, but not the amplitude, of miniature excitatory postsynaptic currents, indicating that eCBs inhibit glutamate release in the DR. In addition, we found that depolarization of DR 5-HT neurons induced a transient inhibition of the amplitude of eEPSCs, termed depolarization-induced suppression of excitation (DSE). The induction of DSE required an increase in postsynaptic intracellular calcium and was due to a decrease in glutamate release. Furthermore, pharmacological studies showed that blockade of CB(1) receptors with AM 251 abolished the DSE. In contrast, activation of CB(1) receptors with WIN 55,212-2 mimicked and occluded the DSE, indicating that depolarization of DR 5-HT neurons triggers eCB release, which in turn mediates the DSE. Together, these results indicate that eCBs play a role in modulating glutamatergic synaptic transmission to DR 5-HT neurons.
منابع مشابه
Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors.
The endogenous cannabinoid system has been shown to play a crucial role in controlling neuronal excitability and synaptic transmission. In this study we investigated the effects of a cannabinoid receptor (CB-R) agonist WIN 55,212-2 (WIN) on excitatory synaptic transmission in the rat ventral tegmental area (VTA). Whole-cell patch clamp recordings were performed from VTA dopamine (DA) neurons in...
متن کاملThe wake-promoting peptide orexin-B inhibits glutamatergic transmission to dorsal raphe nucleus serotonin neurons through retrograde endocannabinoid signaling.
The wake-promoting neuropeptides orexins (hypocretins) play a crucial role in controlling neuronal excitability and synaptic transmission in the CNS. In this study, using whole-cell patch-clamp recordings in an acute dorsal raphe nucleus (DRN) slice preparation, we report that orexin B (Orx-B) depresses the evoked glutamate-mediated synaptic currents in DRN 5-HT neurons. The Orx-B-induced depre...
متن کاملChronic stress impairs α1-adrenoceptor-induced endocannabinoid-dependent synaptic plasticity in the dorsal raphe nucleus.
Alpha 1-adrenergic receptors (α1-ARs) control the activity of dorsal raphe nucleus (DRn) serotonin (5-HT) neurons and play crucial role in the regulation of arousal and stress homoeostasis. However, the precise role of these receptors in regulating glutamate synapses of rat DRn 5-HT neurons and whether chronic stress exposure alters such regulation remain unknown. In the present study, we exami...
متن کاملRegulation of central synaptic transmission by 5-HT(1B) auto- and heteroreceptors.
Although 5-HT(1B) receptors are believed to be expressed on nerve terminals, their precise mode of action is not fully understood because of the lack of selective antagonists. The 5-HT(1B) receptor knockout mouse was used in the present investigation to assess the function of 5-HT(1B) receptors in the modulation of synaptic transmission in three areas of the central nervous system: the dorsal r...
متن کاملEndocannabinoids Potentiate Synaptic Transmission through Stimulation of Astrocytes
Endocannabinoids and their receptor CB1 play key roles in brain function. Astrocytes express CB1Rs that are activated by endocannabinoids released by neurons. However, the consequences of the endocannabinoid-mediated neuron-astrocyte signaling on synaptic transmission are unknown. We show that endocannabinoids released by hippocampal pyramidal neurons increase the probability of transmitter rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 331 1 شماره
صفحات -
تاریخ انتشار 2009